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Abstract. A recurrent neural network is considered that can retrieve a collection of patterns, as
well as slightly perturbed versions of this ‘pure’ set of patterns via fixed points of its dynamics. By
replacing the set of dynamical constraints, i.e. the fixed point equations, by an extended collection
of fixed-point-like equations, analytical expressions are found for the weights) of the net,

which depend on a certain parameberThis so-called basin parameteis such that fob = 0

there area priori, no perturbed patterns to be recognized by the net. It is shown by a numerical
study, via probing sets, that a net constructed to recognize perturbed patterns, i.e. with values of
the connectionsy;; (b) with b # 0, possesses larger basins of attraction than a net made with the
help of a pure set of patterns, i.e. with connectiangb = 0). The mathematical results obtained

can, in principle, be realized by an actual, biological neural net.

1. Introduction

The capacity of a neural network to recognize a pattern that is not precisely equal to, but
resembles, a given, stored pattern is characterized by what is called, in a mathematical context,
the ‘basin of attraction’ of the stored pattern. If the basin is small, the network will only be
capable of associating a small set of similar patterns to a typical pattern, whereas for a large
basin the set of similar patterns that can be recognized is large.

Once a pattern has been presented to a neural network, the neural network starts to evolve
under the influence of its own internal dynamics. If the network, at the end of this process,
ends in a unique state this state is called a (single) attractor of the network. It is also possible
that the network hops between more than one final state, in which case one speaks of a multiple
attractor [1-3]. Patterns that evolve to an attractor are said to belong to the basin of attraction
of this attractor. Many ways of characterizing basins are in vogue: basins are said to be deep
or shallow and narrow or wide [4].

Away to influence the basins of the attractors is to change the network dynamics, switching
from deterministic to stochastic dynamics [5, 6]. Another way to change the dynamics of the
neural network is to vary the connections during the learning stage. The latter possibility can
be exploited in a model for an actual, biological system [7-9].

We are primarily interested in biological neural networks. Therefore, we are not aiming
at mathematical problems such as (optimizing) the storage capacity in relation to the sizes of
the basins of attraction, a subject that has received ample attention in the literature [10-14].

Many dynamical systems are parametrized by a certain constanimetimes called the
‘margin parameter’. The margin parameteis claimed to be related to the size of the basins
of attraction of the fixed points of the dynamics of a neural network [15-19]. Naively, one
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would expect, for reasons that are directly related to the way this parametentroduced

in the model, that the larger is the larger the basins of attraction will be. However, as the
1997 study of Rodrigues Neto and Fontanari indicates, this may not be true. Their numerical
analysis for tiny networks (up to 24 neurons) suggests that the number of attractors increases
with increasinge and that, perhaps because of this increase, the basins of attraction are not
enlarged—as one might at first expect [20]. In section 3, we arrive at a precise interpretation
for the margin parametar, which, usually, is introduced as al hocquantity. In section 4,

we consider the effect of the margin parameter on the basins for a network with 256 neurons.
For a basin parametér= 0, we find that the larger ig, the larger the basins, in agreement
with what one would expect naively (see figure 15o£ 0).

The 1992 study of Wong and Sherrington is also concerned with the sizes of the basins
of attraction. One of their finding is, roughly speaking, that the noisier the set of learning
patterns, the larger the basins of attraction [4]. Our findings support their observations (see
figure 1 forb > 0).

We consider a network in its final state only, i.e. after the process of learning has stopped.
This makes our study time-independent. We try and construct a network with waights
that can not only store a certain set pfprescribed patterng* = (&', ..., &y), where
w=1 ..., p,butthat can also remember a larger set of patterns, centred around these typical
patterns. These enlarged sets, callgdb) below, are characterized by the basin parameter
b mentioned above. 5 = 0, the sef2*(b) reduces to the sole pattegi. What we obtain,
finally, are values for the weights that depend on this basin parameter

w;;j (fo) + i (1) (jew)

1
w;;j (to) (JjeVy) )

w;; (1) =
with

P
Vi) = N71 Y " [ = 7/ (b, wi(to)] (28] = D(CTH BN (A= b)&) +b(L—£)] (2
n,v=1

(see section 5, equations (32), (34) and (37)). Hereuth@o) are arbitrary numbers, which
can be interpreted, in a different context, as initial values for the weights, at an initial time
to, as is suggested by the notation. Furthermatés the number of neurons of the network.
We abbreviatedw; (o) := (wi1(to), - .., win(fo)). The quantities’’ are defined in (15) for
arbitraryw;, and the matrice€*” are defined in (24). Thg" depend on threshold potentials
9;, the basin parametérand the input patterng“. V; and V¢ are index collections defined
in such a way that the weights;; are adaptable if € V; and constant ifi € V¢ (for all
i=1,...,N). Ifthe (constantsjv;; vanish, there is no connection betwegesmnd j. Hence,
thew;; (j € V) determine the network topology. The marg (j € V) vanish, the more
‘diluted’ a network. We have writtemw;; (t) for the weights, to facilitate comparison with
earlier result (see, e.g., [21]). In this paper they are time independent constants, however.

The formulae (1) and (2), constituting the main result of this paper, generalize well-known
results for the weights of a recurrent network. The generalizations concerned are: the network
may not be fully connected, and the weights may depend upon the prescribed sizes of the
basins, characterized by the basin paramietdfor b = 0 we recover our earlier result for a
diluted network [21].

It turns out that in some cases the basins of attraction are larger for valbesefual to
zero. In other words, a network which has learned not only a set of pagtérhat a collection
of perturbed pattern®# (b), will possess larger basins of attraction. Hence, a network can
optimally recognize perturbed patterns, if it has been constructed with perturbed patterns. This
is what Wong and Sherrington [4], in a related study, but for a network with connections that
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are changed during a learning process, call the ‘principle of adaptation’: a neural network is
found to perform best in an operating environment identical to the training environment. Our
analysis of the system after the process of learning is completed confirms this observation,
albeit that the word ‘identical’ is not to be taken literally. So far we have given a general
introduction to the problem. We now come to a short overview of our paper.

In section 2 we start by defining mathematically the problem to find suitable synaptic
weights by formulating the equations to be obeyed by the weightsf the connections. In
section 3.1 and the appendix we indicate how we could obtain, in principle, a series expansion
in the parametel for the solution of the equations. To actually calculate the first terms of the
expansion would be very time consuming. We therefore proceed differently. In section 3.2
we rewrite the implicit expression found in section 3.1 in such a way that we can easily find
an approximation (see equation (31)). What we essentially do is to replace in the alternative
implicit expression found in section 3.2, a certain averggeelated to théth neuron potential
h;, threshold); and the activity;, given explicitly by equation (7) below, by one and the same
constantc. We thus find, by identification of in an old result and the introduced here, an
interpretation for the margin parameter Whether or not this replacement of the functions
7/* by one and the same constant makes sense is studied in the next section. In section 4 we
introduce a probing set, characterized by a probing pararbefine network’s performance,
as a function of the basin parameteris calculated numerically for different values of the
probing parameteb. We thus test our approximation to the exact solution, and find it to be
quite satisfactory.

2. Mathematical formulation of the problem

2.1. Equations for the enlarged sets of input patterns

Consider a recurrent network &f neurons. A neuron of this network fires{; = 1) if its
potentialz; = ZlN:l w;;x; surpasses a certain threshold valug = 1, ..., N). The dynamics
of the network is given by the deterministic equation

N
xi(t+ A1) = @H<Zw,~,x,(t) —9,) (i=1...,N) (3)
=1

where®y is the Heaviside step functio®y(z) = 1 for positivez and zero elsewhere. The
weights of the neurons of the network will be updated simultaneously, i.e. we use parallel
dynamics.

Let us suppose that the network is such that it can storp haternst?, ..., £, where
¢ is an N-dimensional vector consisting of zeros and ones. Forutiepattern we have
h; = ZlN:l w;&/", hence the weights); of this network are constrained by the fixed point
equations, following from (3)

N
@H<Zwi,sﬁ—9i>=gﬁ (w=1....,p;i=1,...,N) (4)
=1

(see, e.g., [21]).

Once the weightsv;; occurring in (4) have been determined for chosen collections of
patternst”, one may ask the question which patteinslike but not exactly equal to one of
theg”, evolve to the fixed poirg”, i.e. what are the basins of attraction of the fixed paoffits
It is precisely the purpose of this paper to study this question in some detail.

The basin of attraction of an attractor of a dynamical system is defined to be the collection
of vectors that evolve, in one or many steps, to this attractor. We are here interested in the
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question which vectorg, belonging to certain disjunct sets of pattefs, centred around
typical patterng” (u = 1, ..., p), arrive, in one step of the dynamics only, at the fixed point
&*. These lattetr belong certainly to the basin of attraction as defined above, and will be
referred to, for the sake of simplicity, as the basin of attraction, although it is only a part,
namely, the one-step part, of the actual basin of attraction.

In order to take our newly defined basin of attraction into account, we shall replace the
requirement (4), an equation for the weights, by

N
®H<anx1—9i>=$,»“ (w=1....,p;i=1...,N) )
=1

where the patterns belong to certain given disjunct sets of pattefris still to be specified,
centred around typical pattergs (« = 1,..., p). Equation (5) is the central equation of
this paper; we are no longer concerned with equations (3) or (4). Note that this equation is
time independent; nevertheless, we will indicate the final solution for the weighis;lay,

in order to suggest that these are the weights after a period of learning. We shall determine by
an (approximatinganalytical procedure the weights;; such that (5) is probably satisfied for
most of the patterns, but not necessarily for all patterns. The latter will depend on the chosen
collectionsQ* (u =1, ..., p). Having obtained the weights;;, for such a particular choice

of Q*, we shall check by aumericalprocedure whether af € @* actually satisfy (5). This

will indeed not always, but often, be the case. Thus we shall have obtained values for the
weights which could be useful for an actual network.

As stated above, we are not concerned, in this paper, with the process via which learning
takes place, we are only studying the purely mathematical problem of finding values for the
weightsw;; that guarantee storage and retrieval properties of a neural net. This leaves us with
the question of whether the values, given by such a dry, mathematical requirement can actually
be realized by the wet-ware constituted by the neurons and their connections. This point is
the subject of our next paper [22], where it will turn out that a biological system can realize
values for the weights which very closely approximate the values obtained here: compare
formulae (1) and (2) with (38) and (39) of [22].

Distinguishing the caseg’ = 0 (no neuron activity) ang’ = 1 one may verify that the
equations (5) are fulfilled if and only if

N
)/l-lt(w,‘) = (Z wi X — 9,')(2&“ — l) >0 YV € Q" (6)
=1
where we abbreviated; := (w;1, ..., w;y), and where* is a collection of patterns which

will be made explicit in section 2.2. Let*(x) be the probability of occurrence of a pattern
x in the setQ* of patterns centred around a typical pattefn From (6) it follows that the
averagey; defined as

N
v (wi) = Z p"(iC)(Zwi/x[ - Oi)(Zéi” -1 (w=1....,p;i=1...,N) (7)
zeQH =1
are also positive, i.e.
Z'M('wi) > 0. 8)

Conversely, the fact that the averages are posifife> 0, does not necessarily imply that
v >0@G=1,...,N;u=1...,p). Throughout this paper, the averageswill play a
central role.

Let ng be the total number of patterns belonging to any of the collectiohqu =
1,..., p). Since, in general, the numbes is larger than the number, the set of equations (5)
will be more restrictive than the set (4).
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Inthe following, we shall consider biological networks, forwhich =0(G = 1, ..., N).
Moreover, we shall consider partially connected (or diluted) networks, i.e. we allow for the
possibility that a particular set of connectioms vanish. In general, we shall suppose that
a certain subset of connections; have prescribed values, which may or may not be zero.
In order to formalize this, we introduce the s&{s(i = 1, ..., N) and their complements
V<. the V; contain all indicesj for which w;; is not prescribed, but are to be determined via
equation (5), while their complements’ contain all indices; for which w;; have certain
prescribed values, which may or may not be zero [21]. Let the total number of indices
whichw;; (i =1,..., N) is prescribed be given by/. Then (5) is a set oNnq inequalities
to be satisfied by th&/ — M unknown weightsw;;.

Multiplying both sides of (5) by* (x)x; and summing over andxz we obtain

P N p
> p*‘(m)x,@H(Zwim - e,-> =Y Y pr@xE (e ©)
u=1weQH =1 u=1zeQH
These ar&v2 — M equations for th&/? — M non-prescribed weights;;, from which we want

to solve thew;;, once theQ*, or, equivalently, the* (x) are specified. Notwithstanding the
fact that the number of equations equals the number of unknowns, the solution of (9) for the
weightsw;; is not unique, because the step functtdg only requires thaElN:1 wix; — 6; be
positive or negative. As an aside, note that equation (4) is underdetermingd<fay: then

there are more unknowns; than equations.

2.2. The distribution of patterns in the basins

We choose the following, particular, probability distribution function:

N
pr@ =]]pl@) (10)
i=1
where
pi(xi) = (L= b)8,, ¢r + b8y, 1_gn (11)

and where is a parameter between 0 and 1, which we will refer to as the ‘basin parameter’.
The setsQ* around the patterng” are supposed to be disjunct, and a vector
outsideuﬁle“ has, by definition, a vanishing probability of occurrence. The probability
distribution (10) and (11), however, yields a finite—albeit very small—probability of
occurrence for a vectar outside the direct surrounding” of ¢*, since it is defined for
all 2V possible vectors:. The observation that the probability distribution (10) and (11) for
x outsideQ2* is very small allows us to approximate the sum ofalt UZ=19“ by the larger
sum over alke € {0, 1}". This approximation will enable us to obtain analytical results.
If b = 0, only the patterng = ¢* have anon-zero probability of occurrence. For values of
b close to zero any vectar has a non-zero probability of occurrence, but only vectoctose
to one of the¢” have a probability of occurrence comparable to the probability of occurrence
of a typical pattern. Note that the basin parameter is directly related to the magnit@de of
the largem, the larger the number of pattern<irt that resemble the pattegfi. Let us denote
the average over the patterns as

i;‘ = Z pl(xz)x;. (12)
xe{0,1}Y
Then, from (10) and (11) we find
> P =1 (13)

ze{0, 1}V
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and
o= Y M=), e+ b8 1l [ D0 [ = D)8y, g + D8y 1]

x;=0,1 k#j x;=0,1
=1 -b)E +b1—ED). (14)
The first equation, equation (13), expresses the normalization of the probability distribution
function, the second one, equation (14), expresses the fact that the average value of the activity
of neuronj is a number between 0 and 1, depending on the basin paramelésing (12)
and (13) in (7) yields

N
v(b,w) = (Z wi X, — 91')(25,” -1 (15)
=1

whereb is the basin parameter and whetg is given by (14). Thew;; occurring in this
expression still have to be found.

3. Solving the equations

We will now try and solve the problem of finding the weights, of a recurrent neural
network, in the approximation dictated by equation (9) combined with the particular probability
distribution (10) and (11), and we hope, thereby, to have obtained a useful solution for the
problemthat we actually wantto solve, i.e. equation (5) or, equivalently, (6) for given collections
QM. The question, to what extent we will have achieved this goal will be answered in section 4,
where we perform a numerical analysis.

The analytical approach to the problem to solve (9), an equation for the weights of a
many-neuron recurrent network, is an adapted version of the way in which Wiegerinck and
Coolen calculated the weights for a large perceptron [23].

3.1. Implicit equations for the weights

By substituting (10) and (11) into equation (9), we can obtain explicit expressions for both its
left and its right side, and, from these, solve for the weights Using (12), we immediately
obtain for the right-hand side of (9)

)4
DO pr@xE =) & (16)

n=1xeQH "

wherei‘,.‘ is given by (14). We turn now to the left-hand side of equation (9), the handling of
which is more complicated and will be largely done in the appendix.

We note that ifw;; = w;;(6;,&") is a solution of equation (4) or (5), then also
Wi (6;, &) == awij(a;%6;, £") is asolution of equation (4) or (5),df is replaced by; = a;6;,
whereq; is an arbitrary real constant. Using this freedom of gauge ayita (3 _, w? )Y/?,
we can adjust the order of magnitude of the weights and the thresholds

wij 5 b
N— 0; = N—
/ 2 / 2

Zm:l Wi Zm:l Wi

which has a consequence thatwif and6; are of the ordeiV” (y an arbitrary real number),
the hatted quantities are small, namely of the or¢le/A. Note that

N
Y owg, =1 (18)
m=1

17)

w,-j =
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Equations (17) and (18) enable us to switch, at any moment, from hatted to unhatted quantities.
The hatted quantities are useful in view of the property (17), a property that is used in the
appendix. One has, trivially,

N N
®H<Zwﬂx1 - 91’) = @H(Zli)ilx; - é,) (19)
=1 =1

The further evaluation of the left-hand side of (9) in terms ofihgeis rather complicated and
is given in the appendix. Combining the right-hand side, equation (16), and the left-hand side,
equation (A.21), we find an implicit equation for tkig;

P
hij = N~" Y El'(b)(28]' — D (i=1....N;jeV) (20)

u=1

where theE! given by

() (b, w)) "L exp(— (v, (b, w;)?/20)
>, exp(—(7; (b, w;)2/20)

are positive quantities. In the latter equations we abbreviated 5(1 — b) and introduced
ﬁf(b, w;), quantities like ther”*, equation (15), of which the precise definition is given in the
appendix by (A.17). With (20) and (21) we have obtained an expression for the weights
in terms of theﬁl’.‘(b, w;), which, in turn, is a given function of the weights;, the thresholds
6; and the patterng®. In other words, equations (20) and (21) are implicit expressions for the
weights only.

We could find explicit expressions for the weights by expandin@ﬂ(@, w;) as a power
series in the basin parameter

Ef(b)=N (21)

Ny ~un0 apl aAp2
v b, w) =y, +vy; bl"'V,' b2+ (22)

Inserting this expansion into (20) and (21), using (A.10), and equating equal powers of the

expansion variablé, we may obtain explicit expressions for the expansion coefficiéﬁ]is
wmw=1....,p;i =1...,N;k =0,12,...,00) of the power series i, in terms of
the physical quantitieg”, §; and w;;, wherej is restricted to the seit’. We thus would
find an analytical solution of equation (9). This scheme has been carried out by Wiegerinck
and Coolen [23] for the perceptron. We do not pursue this path for the recurrent neural net
considered here, but we will use a pragmatic shortcut to arrive at an approximate explicit
expression instead. This will be done on the basis of an alternative implicit expression for the

weights (20), to be derived in the next section (see equation (27) below).

3.2. An alternative implicit expression for the weights

Rewriting (A.17), we may derive an alternative expression £b). To that end we
substitute (20) into (A.17):

P
> CIEN(b)(2g! — 1) =TV (b) (23)
v=1

whereC!"" is the symmetrigp x p correlation matrix given by

Cl"(b)y:=N"1) s,

(24)

meV;
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with u,v =1, ..., p and where

P (b 1= [ﬁf‘(b, wi) — ( S it —é,)(zs;‘ - 1)]@5,-’* _n. @)
mevVf
From (23) we get, by multiplying both sides (8¢} — 1)6‘[M and summingover =1,..., p,
P
E}(b) =) TID)(C b)) (28! — 1) (26)
n=1

whereC 1 is the inverse of the matrig. With (26) we have obtained an alternative expression
for the E(b) (see equation (21)) in terms of the same quantities, nambgly,*, 6; andb.
Substitution of this alternative expression (26) into (20) leads to an alternative expression for
thew;; with j € V;:

P
hij =N [f? (b, w;) — ( D il — éi)<zsf‘ - 1>}<2§;‘ — (G )" x).
n,v=1 meV¢

(27)
In equation (A.17) we introduced thiaf(b, w;) as functions of the weights;;. Here, we
have found, conversely, the weights in terms of fﬁe{b, w;). By insertingw;; (27) into
f?f(b, w;), equation (A.17), and making use of definition (24) &t’ (b) one arrives, indeed,
at an identity. In view of (17), equation (27) also holds true with all hats dropped.

They occurring in (27) are given by
u )28 — 128 — 1) exp(— (7 (b, wi))?/20)
yi (bvwl)_NZ - = 2
= 7 (b, wi) Y, exp(—(7/ (b, wi))?/20)

+< Z wimiz - 91)(2$,M - 1) (28)

meVE

as follows from (21), (23) and (25). Equations (27) with (28) are an implicit expression for
the weights. Developing thg according to (22), we might obtain an explicit expression for
the weights (27), just as in section 3.1.

The weightsw;; have been constructed as a solution of equation (9), an equation which
is strongly related to equation (8). Hence, one may expect that, on the averagg, dhe
positive, i.e.

7 (b, w;) > 0. (29)

We come now to the shortcut referred to above. Instead of determining the coefficients of
the expansion (22) for thg, we truncate this expansion after the first term. Dropping the hats
and writing

7=« (30)
for all constant first terms in the expansions (22), we obtain from (27)

P
Ny [K _ ( 3 win il — (9,-)(251!* _ 1)}(2;# —1)

w;; = /l.,v:l_ mevV§ (31)
! x (C b)) " (jeV)
Wij (prescribeyl (j e V).

Note that with the choice;;(fo) = 0 for j € V; andw;;(fo) = w;; (prescribed) forj € V< in
our main result, equations (1) and (2), the latter equations reduce to equations (31). We thus
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have almost found the main result. The final form (1) and (2) is derived in section 5, after a
numerical analysis of the particular case (31).

In view of (29), we will choose fok, in equation (30), a certain positive number. This
approach, in which we replace the consta}j‘tg by a number to be found by (numerical) trial
and error isa priori, rather crude. The usefulness of this way of handling will be the subject
of the next section.

4. Numerical results: probing the basins

In this section we study the question regarding the size of the basins of attraction induced by the
collection of pattern§2*(b). Stated differently, we will determine whether the solution (31)
for the weights gives suitable basins of attraction. In particular, we will search for the optimal
valuesk andb to be taken in (31). This will be done by carrying out a numerical analysis.

Let us denote, more extensively, thé of equation (6) by (x, w; (b), §). Equation (5),
with weights w;; (b) given by equations (31), is satisfied if, for a certain pattefrthe
vi(z, w; (b), &") are positive for ali. Therefore, we proceed as follows.

We construct probes consisting of patteineentred around the typical pattergts, and
test whether these are recognized by the neural net, i.e. we determine the sign of fioe
the patterns: of the probe. As a probing set we take patterns which are distributed around the
typical patterng” in the same way as before, namely as given by formulae (10) and (11), but
now with the basin parametéreplaced by a parametér The latter parameter is dubbed the
‘probing parameter’. In general, the probing paramétesed in the test will be unequal to the
basin parametdr used to calculate the weights; (). If the probing parameter vanishes,
a probing collectior2* (b = 0) consists of precisely one pattern, namgly

In our numerical study, we first picked a certain value for the probing parameter
thereafter took am: belonging to the probing se®/(b) defined by thish, and thereupon
calculated they; (z, w; (b), £/'), equation (6). We repeated this procedure (for filgchany
times, and then calculated the fractionaobf the probing set for which al; (z, w; (b), §*)
were positive.

In figure 1, we have depicted the relative numbercdfelonging to the basin (vertical
axis) as a function of the basin paramebethorizontal axis). The graphs, b, ¢ andd in
figure 1 correspond to four values of the margin parameter = 1,k = 2N~ %,k = N1
andx = %N*l. All patterns¢” are supposed to have the property that an arbitrary chigsen
has probabilitys to be equal to 1. This probability is referred to as the mean activity. Note
that for random patterns the mean activity is giveruby 0.5. Experimentally, however, the
mean activity is found to be smaller [24]. In all graphs we have chosen vanishing prescribed
weights,w;; =0, j € V¢, andd; = N~*foralli = 1,..., N. Thatis, we considered diluted
networks. More specifically, we took, randomly, 20% of the weights to belong to tH& set
which corresponds to a dilutioh= 0.2.

Each of the curves in figure 1 corresponds to a different value of the probing parameter
b. Going from top to bottom in the four graphs of figure 1, we cross curves with a larger
and larger probing parametar For the smallest possible value of the probing paramgter
namelyb = 0, the probing set reduces to a typical patgfnlIt follows from figure 1 (see the
upper curves{;—) that the fraction ofc belonging to a basin equals 1 for a large range of
the basin parametér As is to be expected, a typical patt&rhindeed is a fixed point for all
values ofb (up to some upper limit which is larger thar8).

For values of the probing parameterclose to zerop = 0.02 say, the fraction ok
belonging to a basin equals one for a large range of the basin paramtes the second
curves from above, indicated by ++). As long as the probing set is smaller than the set
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Figure 1. Probing of the basins for various values of the margin parameter. In the four graphs
(a)—(d), the fraction ofx with all y; positive is depicted, vertically, for four values of the parameter
« oceurring in the final expression for the weigkts= 1,x = 2N "%, « = N~tandk = N as

a function of the basin parameter The six curves in each of the graphs correspond to different
values of the probing parametetthat characterize the se@®(b). From top to bottom, in each
graph, we have plotted the fractionsfvith all y; positive for values ob given by the six numbers

0, 0.02, 004, 006, 008 and 01, respectively. The number of neuronsVs= 256, the number of
patterng equalsp = 32. The mean activity i8 = 0.2. The dilution of the network ig = 0.2. In
each of the four graphsa)—(d), that is, for four different values of the margin parametethere is

an interval of values df for which the fraction ofs equals one, for a range of values of the probing
parameteb. Hence, for probes with in the latter range, the net has values for the weighsb)
which are such that the net performs optimally.

of patterns which belong to the basin of attraction, the fraction remains one. If this fraction
is less than one, the probing set is larger than the set of patterns which form the basins of
attraction. Hence, the probing parameétean be viewed as a measure for the size of the basin

of attraction.

To illustrate these latter statements we take as an example figl)reThe linesh = 0 and
b = 0.02 coincide: they are the horizontal line with fraction one. &er 0.04, corresponding
to a fraction given by the curve withl- - .[J, the fraction rises to one as a functiontofThis
implies that the size of the basins grows as a functioh. ofor larger values ab, given by
the curves with crosses, triangles and asterisks, the fraction also rises as a funétiap of
to some value ob, but never equals one. So in these cases, the number of elements of the
probing sets always clearly is larger than the number of elements belonging to the basins.

Now we come to the effect afon the performance of the network. Comparing figure$ 1(
and @), and looking where the fraction equals one, we discover that for largeshould be
small, and vice versa.

In figure 2, we study for a large value= 1 and a small value = %N*l of the margin
parameter what happens when the number of patterns varies from 16 via 32 to 64. As before
we have taken vanishing prescribed weights,= 0, j € V¢,6; = N-'foralli =1,..., N,
and dilutiond = 0.2. We find for« = 1 as well asx = %N‘l that when the number of
patterns increases, the size of the basins decreases. But, since the curves have a hump, a basin
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Figure 2. Probing of the basins for various numbers of patterns. The fractianwith all y;
positive is depicted, vertically, for three different valyesf the number of stored patterns= 16
(top), p = 32 andp = 64 (bottom), as a function of the basin paramétein the left column
the margin parameter is chosen large compared with the thresheld]l, whereas in the right
columnk is taken as of the order of the threshotd= %N*l. The six curves in each of the graphs
correspond to different values of the probing paramktefrom top to bottom in each graph we
have plotted the fraction af with all y; positive for values ob given by 0, 002, 004, 006, 008
and 01, respectively. The number of neuronsNs= 256, the mean activity is = 0.2. The
dilution of the network is/ = 0.2. It is seen that fob # 0, the fraction rises, up to some value of
b. Hence, for large (left column) and smalt (right column), the net performs better for 0,
for different values of the number of patterps

parametep with value unequal to zero yields a network that recognizes a larger part of the
probing set$2* (b).

A final observation relating to figures 1 and 2 is that, in general, a network with weights
w;; (b # 0) possesses larger basins of attraction than a network with weights = 0).

5. Relation to earlier work

The above mathematical study has been performed for adaptable weights.c V;, to be
determined by the equations (9), and prescribed weights,; € V. Let us turn to the
situation of a neural network that adapts its weights, in the course of time, according to some
learning rule. In such a network, all weights start, at 1 say, with some initial value;; (o).

The weightsw;;, with j € V¢, keep their weights throughout the learning process, while the
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weightsw;;, with j € V;, change in the course of time. Now we ask the question, whether we
can findw,; which are such thab;; (r) has prescribed values; (to), for all i andj, atr = #o,
whereag// (b, w; (1)) has a large probability of being positive. One way to obtain thigsés

via thew;; that are given by the unhatted counterpart of equation (27). In fact, they are given
by

o wi o) F () (jeW)
w;; (1) = wis(to) (e ve) (32)
where
)4
vii (1) = wij () = N2 Y Y win () ¥4 Ci (b)) E) (33)
w,v=1lmeV;

in which we have denoted the (unhatted counterpartsvgfpf equation (27) asv;;(z). An
alternative way to write equation (33) is given by

P
vii () = N71 Y [/ 0, wi (1) — 7/ (b, wi (10)] (2] — )(C; b))% (34)

n,v=1
The weightsy;;, equation (32), have been constructed in such a way that

Vi (b, @i (1) = 7/ (b, wi (1)) (35)
The latter equation can be verified easily. In fact, inserting (32) with (34) into (15) gives

p
7 (b, wi (1) = 7 (b, wi(10)) + Z [¥" (b, wi (1)) — v (b, wi(10)] (28] — 1)

v,A=1
x (28" — 1)(C; b)) C* (b) (36)

where we used definitions (15) and (24). Siﬁ‘¢é (b) is symmetric, the product of the matrices
C gives a Kronecker delta, which in turn yields (35). The property (35) guarantees that when
the 7/ (b, w; (1)) are positive, the’’* (b, w; (1)) are also positive.

Using the same shortcut as above, equation (30), we obtain

P
vii(t) = N71 Y [k — 7 (b, w; (10)] (28" — D(C (b)) &Y (37)
w,v=1
with x? given by (14). Equations (32) and (37) are equivalent to the main result (1) and (2)
mentioned in the introduction. Putting in this expression the basin parameter equal to zero
(b = 0), we recover the expression obtained after a learning process in a preceding paper [21].
This suggest that (32) with (37) is the generalization of the weights in a process of learning
with noisy patterns. Hence, we may state that a network performs optimally when trained with
noise ¢ # 0), or, stated differently (and less precisely), a neural network performs best in an
environment identical to the training environment. This is what Wong and Sherrington refer
to as the ‘principle of adaptation’ [4]. In our next paper, we will extensively return to this
guestion, in a biological context [22]. The final result will turn out to be that expression (32)
with (37) is, apart from a detail, indeed the generalization of learning with noisy patterns.

6. Conclusion

Although we studied a neural network, we did not consider learning and learning rules. We
simply asked the question, what values must one take for the weights of a neural network in
order that it performs optimally, i.e. that it can retrieve the largest sets of perturbed patterns.
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We were able to reformulate this problem in a mathematically exact way, and to obtain a
solution that, by its construction, had a certain plausibility of being a suitable one. Finally,
we performed a numerical test, which confirmed the usefulness of our approach. The weights
w;;(b) obtained in this paper on the basis of perturbed dates (0) yield a network with

larger basins than would have been obtained in the case of non-perturbed datd)( In

a subsequent paper we will propose a biological learning rule which is such that, apart from
a minor detail, the synapses strive at the values for their weights as given by the main result
of this paper, equations (1) and (2). In other words, nature might realize almost totally what
mathematics suggests.

Appendix A. Derivation of implicit equations for the weights

In this appendix we will evaluate the left-hand side of equation (9). Then, combining this with
the result of section 3.1 for the right-hand side will lead to implicit equations)far

Inserting (19) into the left-hand side of (9), multiplying by a delta function containing a
variablez and integrating over, we get the equivalent expression

Z Z Z p"(:c)/dzxj@H(zI),-jxj —é,'+z)8|:z—zwuxz}

i x=01 xy=01 I#]
= Z/dzzp;‘(xj)xj@H(ﬁ;i,xj —6;+2)P(2) (A1)
Iz Xj
where we used (10) and where we abbreviated
P,.f;(z)=Z...ZZ...ZHp;;(xm)a[z—Zwi,x,] (j e V). (A.2)
X1

Xj-1 Xj+1 XN m#j I#j

The summation over; in (A.1) yields

Z P;L(xj)xj®H(liJijxj — 0 +2) = fjf@H(ﬁ)ij — 0 +2) (A.3)

Xj

as follows by inserting (11). The facto}tf; (z) can be rewritten in the following way.
Using a well known representation of the delta function we first obtain

1 oo ikz — kWi x,
Pj() = > / dk€* [T D2 ple(xme*imen. (A-4)
—00 m#£j X
One has
Z p,lfl (xm)efikli)imxm — (1 _ b)e*ikﬁ)iméﬁ + be*ikli)im(lfér#) (A5)

Xm

where we used (11). Inserting (A.5) into (A.4) we may write

1 . A W AR i

Pl.‘; (z2)=— / dk eXp{Ikz+ Z In[(1— b)e kidimbn 4 be—lkrmm<1—s,,,)]} (A.6)

21 /
m#j

where we used = exp{lny}. We can now expand the two exponentials occurring in the

argument of the logarithm. This leads to a term of the forrll® y). Thereupon, we can

expand this term as— y?+- - -, sincey is of the order ofi;;, andd;; is of the ordetv /2,

as noted above (see equations (17) and following text). Thus we obtain

In [(1 _ b)efiklfiim&x + befiklil,'m(lffrsf)] — —|kli),m)2$ _ %b(l _ b)kzﬁ),zm I (A?)
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Inserting (A.7) into (A.6) we may write

Pi’;(z) = Zi expi—(z — z0)?/20} /oo dk exp{—g(k —i(z — zo)/a)z} +... (A.8)
T oo 2
where we abbreviated
o =b(1—-b)Y 0}, 0= ) Wimkh. (A.9)
m#j m#j
Using the fact thath;; is of the order 1/N we may write
o =b(l—0b) (A.10)
a relation we will use later. After evaluating the integral (A.8), we obtain
P/i(z) = (210) "% exp{—(z — 20)%/20} + - - - (i=1....N;jeV) (A.11)

with u = 1, ..., p. Substituting (A.3) and (A.11) into the right-hand side of (A.1) we obtain
for the left-hand side of (9)

(2ro) "2 Z/dzi_’i‘(aH(zi),»j — 6 +2) exp{—(z — z0)?/20}. (A.12)
The integral occurring ir: (A.12) can be rewritten
Il = (270) "2 /dz@H(w,‘j — 0; +z) exp{—(z — z0)?/20}. (A.13)
Changing the integration variabfeaccording toy = (z — zo)/+/20, we find
Iif]‘- =2 /Z dy®y (&)ij —0; +z0+ \/zy) g’
=z ]:o dye™” + (47) "2 /OOO dy[sgn(zi),-j — 6 +70— \/Zy)

+sgn(ﬁ1,~j — i +z0+ «/20y> ]eyz. (A.14)

The integral over the first term is a Gaussian integral; the second term can be expressed in an
error function. We obtain

1! =1+ lerf ([ﬁf‘(b, w;) (26" — 1) +65]/x/20> (i=1.. N jeV) (A15)
wherep =1, ..., p and where the error function is defined according to
2 (* 2
erf(x) := —/ dye ™. (A.16)
Vv Jo

In analogy to (15) we defined
N
ff(b, w;) = (Z Wi X — é,-)(zs;‘ -1). (A.17)
=1

Furthermore, we abbreviated

ij = —lih_,‘if + ;. (A.18)
Note that, apart from g§*-dependent factor, the quantkﬁg equals the weight);;. In view
of (17), ei’;/\/ 20 is small. The error function in (A.15) can be split into two contributions. For

smalle we have

yte 2 2
/ dye™” =€V +... (A.19)
v
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which allows us to write for (A.15)

=5 %e” (7 @own@s! = 1/v20 ) +

> exp(—(v; (b, w;))?/26) + - - -.

(A.20)

Using (A.12) and (A.20) with (A.17), the final expression for the left-hand side of (9) can be
obtained:

1Zx [1+erf( (b, w;) (28" — 1)/\/%)]+”(1_—W2exp(—(ﬁf‘(b, w;))%/20).
w

€
V2ro

2no
(A.21)

Combining the right- and left-hand sides of equation (9), as given by (16) and (A.21),
respectively, we get an equation from which the weightsfollow immediately:

Vore ¥, @t - b —erf (7 ¢ w2t - V)|
Wy = (A.22)
26(1—b) T, exp(—(7; (b, w)?/20)

With the properties
erf (f;f.‘(b, w;) (26" — 1) /@) = (2t — Derf (ﬁ;‘(b, wJ/x/Z) (A.23)

and
erf(y) = 1— %e—yz +.. (A.24)
we can rewrite (A.22),
iyj = 2111_,7) B (V723! ]
x exp(—(¥; (b, w;)?/20) / Y exp(—(¥; (b, wi)?/20) (A.25)
M

or, equivalently, the final results (20) with (21) of the main text.
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