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Abstract. A recurrent neural network is considered that can retrieve a collection of patterns, as
well as slightly perturbed versions of this ‘pure’ set of patterns via fixed points of its dynamics. By
replacing the set of dynamical constraints, i.e. the fixed point equations, by an extended collection
of fixed-point-like equations, analytical expressions are found for the weightswij (b) of the net,
which depend on a certain parameterb. This so-called basin parameterb is such that forb = 0
there are,a priori, no perturbed patterns to be recognized by the net. It is shown by a numerical
study, via probing sets, that a net constructed to recognize perturbed patterns, i.e. with values of
the connectionswij (b) with b 6= 0, possesses larger basins of attraction than a net made with the
help of a pure set of patterns, i.e. with connectionswij (b = 0). The mathematical results obtained
can, in principle, be realized by an actual, biological neural net.

1. Introduction

The capacity of a neural network to recognize a pattern that is not precisely equal to, but
resembles, a given, stored pattern is characterized by what is called, in a mathematical context,
the ‘basin of attraction’ of the stored pattern. If the basin is small, the network will only be
capable of associating a small set of similar patterns to a typical pattern, whereas for a large
basin the set of similar patterns that can be recognized is large.

Once a pattern has been presented to a neural network, the neural network starts to evolve
under the influence of its own internal dynamics. If the network, at the end of this process,
ends in a unique state this state is called a (single) attractor of the network. It is also possible
that the network hops between more than one final state, in which case one speaks of a multiple
attractor [1–3]. Patterns that evolve to an attractor are said to belong to the basin of attraction
of this attractor. Many ways of characterizing basins are in vogue: basins are said to be deep
or shallow and narrow or wide [4].

A way to influence the basins of the attractors is to change the network dynamics, switching
from deterministic to stochastic dynamics [5,6]. Another way to change the dynamics of the
neural network is to vary the connections during the learning stage. The latter possibility can
be exploited in a model for an actual, biological system [7–9].

We are primarily interested in biological neural networks. Therefore, we are not aiming
at mathematical problems such as (optimizing) the storage capacity in relation to the sizes of
the basins of attraction, a subject that has received ample attention in the literature [10–14].

Many dynamical systems are parametrized by a certain constantκ, sometimes called the
‘margin parameter’. The margin parameterκ is claimed to be related to the size of the basins
of attraction of the fixed points of the dynamics of a neural network [15–19]. Naively, one
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would expect, for reasons that are directly related to the way this parameterκ is introduced
in the model, that the larger isκ, the larger the basins of attraction will be. However, as the
1997 study of Rodrigues Neto and Fontanari indicates, this may not be true. Their numerical
analysis for tiny networks (up to 24 neurons) suggests that the number of attractors increases
with increasingκ and that, perhaps because of this increase, the basins of attraction are not
enlarged—as one might at first expect [20]. In section 3, we arrive at a precise interpretation
for the margin parameterκ, which, usually, is introduced as anad hocquantity. In section 4,
we consider the effect of the margin parameter on the basins for a network with 256 neurons.
For a basin parameterb = 0, we find that the larger isκ, the larger the basins, in agreement
with what one would expect naively (see figure 1 forb = 0).

The 1992 study of Wong and Sherrington is also concerned with the sizes of the basins
of attraction. One of their finding is, roughly speaking, that the noisier the set of learning
patterns, the larger the basins of attraction [4]. Our findings support their observations (see
figure 1 forb > 0).

We consider a network in its final state only, i.e. after the process of learning has stopped.
This makes our study time-independent. We try and construct a network with weightswij
that can not only store a certain set ofp prescribed patternsξµ = (ξ

µ

1 , . . . , ξ
µ

N), where
µ = 1, . . . , p, but that can also remember a larger set of patterns, centred around these typical
patterns. These enlarged sets, called�µ(b) below, are characterized by the basin parameter
b mentioned above. Ifb = 0, the set�µ(b) reduces to the sole patternξµ. What we obtain,
finally, are values for the weights that depend on this basin parameterb:

wij (t) =
{
wij (t0) + vij (t) (j ∈ Vi)
wij (t0) (j ∈ V ci )

(1)

with

vij (t) = N−1
p∑

µ,ν=1

[κ − γ̄ µi (b,wi (t0))](2ξ
µ

i − 1)(C̄−1
i (b))µν [(1− b)ξνj + b(1− ξνj )] (2)

(see section 5, equations (32), (34) and (37)). Here, thewij (t0) are arbitrary numbers, which
can be interpreted, in a different context, as initial values for the weights, at an initial time
t0, as is suggested by the notation. Furthermore,N is the number of neurons of the network.
We abbreviatedwi (t0) := (wi1(t0), . . . , wiN(t0)). The quantities̄γ µi are defined in (15) for
arbitrarywi , and the matrices̄Cµνi are defined in (24). Thēγ µi depend on threshold potentials
θi , the basin parameterb and the input patternsξµ. Vi andV ci are index collections defined
in such a way that the weightswij are adaptable ifj ∈ Vi and constant ifj ∈ V ci (for all
i = 1, . . . , N). If the (constants)wij vanish, there is no connection betweeni andj . Hence,
thewij (j ∈ V ci ) determine the network topology. The morewij (j ∈ V ci ) vanish, the more
‘diluted’ a network. We have writtenwij (t) for the weights, to facilitate comparison with
earlier result (see, e.g., [21]). In this paper they are time independent constants, however.

The formulae (1) and (2), constituting the main result of this paper, generalize well-known
results for the weights of a recurrent network. The generalizations concerned are: the network
may not be fully connected, and the weights may depend upon the prescribed sizes of the
basins, characterized by the basin parameterb. Forb = 0 we recover our earlier result for a
diluted network [21].

It turns out that in some cases the basins of attraction are larger for values ofb unequal to
zero. In other words, a network which has learned not only a set of patternsξµ, but a collection
of perturbed patterns�µ(b), will possess larger basins of attraction. Hence, a network can
optimally recognize perturbed patterns, if it has been constructed with perturbed patterns. This
is what Wong and Sherrington [4], in a related study, but for a network with connections that
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are changed during a learning process, call the ‘principle of adaptation’: a neural network is
found to perform best in an operating environment identical to the training environment. Our
analysis of the system after the process of learning is completed confirms this observation,
albeit that the word ‘identical’ is not to be taken literally. So far we have given a general
introduction to the problem. We now come to a short overview of our paper.

In section 2 we start by defining mathematically the problem to find suitable synaptic
weights by formulating the equations to be obeyed by the weightswij of the connections. In
section 3.1 and the appendix we indicate how we could obtain, in principle, a series expansion
in the parameterb for the solution of the equations. To actually calculate the first terms of the
expansion would be very time consuming. We therefore proceed differently. In section 3.2
we rewrite the implicit expression found in section 3.1 in such a way that we can easily find
an approximation (see equation (31)). What we essentially do is to replace in the alternative
implicit expression found in section 3.2, a certain averageγ̄

µ

i related to theith neuron potential
hi , thresholdθi and the activityxi , given explicitly by equation (7) below, by one and the same
constantκ. We thus find, by identification ofκ in an old result and theκ introduced here, an
interpretation for the margin parameterκ. Whether or not this replacement of the functions
γ̄
µ

i by one and the same constant makes sense is studied in the next section. In section 4 we
introduce a probing set, characterized by a probing parameterb̄. The network’s performance,
as a function of the basin parameterb, is calculated numerically for different values of the
probing parameter̄b. We thus test our approximation to the exact solution, and find it to be
quite satisfactory.

2. Mathematical formulation of the problem

2.1. Equations for the enlarged sets of input patterns

Consider a recurrent network ofN neurons. A neuroni of this network fires (xi = 1) if its
potentialhi =

∑N
l=1wilxl surpasses a certain threshold valueθi (i = 1, . . . , N). The dynamics

of the network is given by the deterministic equation

xi(t +1t) = 2H

( N∑
l=1

wilxl(t)− θi
)

(i = 1, . . . , N) (3)

where2H is the Heaviside step function:2H(z) = 1 for positivez and zero elsewhere. The
weights of the neurons of the network will be updated simultaneously, i.e. we use parallel
dynamics.

Let us suppose that the network is such that it can store thep patternsξ1, . . . , ξp, where
ξ is anN -dimensional vector consisting of zeros and ones. For theµth pattern we have
hi =

∑N
l=1wilξ

µ

l , hence the weightswil of this network are constrained by the fixed point
equations, following from (3)

2H

( N∑
l=1

wilξ
µ

l − θi
)
= ξµi (µ = 1, . . . , p; i = 1, . . . , N) (4)

(see, e.g., [21]).
Once the weightswil occurring in (4) have been determined for chosen collections of

patternsξµ, one may ask the question which patternsx, alike but not exactly equal to one of
theξµ, evolve to the fixed pointξµ, i.e. what are the basins of attraction of the fixed pointsξµ.
It is precisely the purpose of this paper to study this question in some detail.

The basin of attraction of an attractor of a dynamical system is defined to be the collection
of vectors that evolve, in one or many steps, to this attractor. We are here interested in the
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question which vectorsx, belonging to certain disjunct sets of patterns�µ, centred around
typical patternsξµ (µ = 1, . . . , p), arrive, in one step of the dynamics only, at the fixed point
ξµ. These latterx belong certainly to the basin of attraction as defined above, and will be
referred to, for the sake of simplicity, as the basin of attraction, although it is only a part,
namely, the one-step part, of the actual basin of attraction.

In order to take our newly defined basin of attraction into account, we shall replace the
requirement (4), an equation for the weightswil , by

2H

( N∑
l=1

wilxl − θi
)
= ξµi (µ = 1, . . . , p; i = 1, . . . , N) (5)

where the patternsx belong to certain given disjunct sets of patterns�µ, still to be specified,
centred around typical patternsξµ (µ = 1, . . . , p). Equation (5) is the central equation of
this paper; we are no longer concerned with equations (3) or (4). Note that this equation is
time independent; nevertheless, we will indicate the final solution for the weights bywij (t),
in order to suggest that these are the weights after a period of learning. We shall determine by
an (approximating)analyticalprocedure the weightswil such that (5) is probably satisfied for
most of the patternsx, but not necessarily for all patterns. The latter will depend on the chosen
collections�µ (µ = 1, . . . , p). Having obtained the weightswil , for such a particular choice
of�µ, we shall check by anumericalprocedure whether allx ∈ �µ actually satisfy (5). This
will indeed not always, but often, be the case. Thus we shall have obtained values for the
weights which could be useful for an actual network.

As stated above, we are not concerned, in this paper, with the process via which learning
takes place, we are only studying the purely mathematical problem of finding values for the
weightswij that guarantee storage and retrieval properties of a neural net. This leaves us with
the question of whether the values, given by such a dry, mathematical requirement can actually
be realized by the wet-ware constituted by the neurons and their connections. This point is
the subject of our next paper [22], where it will turn out that a biological system can realize
values for the weights which very closely approximate the values obtained here: compare
formulae (1) and (2) with (38) and (39) of [22].

Distinguishing the casesξµi = 0 (no neuron activity) andξµi = 1 one may verify that the
equations (5) are fulfilled if and only if

γ
µ

i (wi ) :=
( N∑

l=1

wilxl − θi
)
(2ξµi − 1) > 0 ∀x ∈ �µ (6)

where we abbreviatedwi := (wi1, . . . , wiN), and where�µ is a collection of patterns which
will be made explicit in section 2.2. Letpµ(x) be the probability of occurrence of a pattern
x in the set�µ of patterns centred around a typical patternξµ. From (6) it follows that the
averages̄γ µi defined as

γ̄
µ

i (wi ) :=
∑
x∈�µ

pµ(x)

( N∑
l=1

wilxl − θi
)
(2ξµi − 1) (µ = 1, . . . , p; i = 1, . . . , N) (7)

are also positive, i.e.

γ̄
µ

i (wi ) > 0. (8)

Conversely, the fact that the averages are positive,γ̄
µ

i > 0, does not necessarily imply that
γ
µ

i > 0 (i = 1, . . . , N;µ = 1, . . . , p). Throughout this paper, the averagesγ̄ µi will play a
central role.

Let n� be the total number of patterns belonging to any of the collections�µ (µ =
1, . . . , p). Since, in general, the numbern� is larger than the numberp, the set of equations (5)
will be more restrictive than the set (4).
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In the following, we shall consider biological networks, for whichwii = 0 (i = 1, . . . , N).
Moreover, we shall consider partially connected (or diluted) networks, i.e. we allow for the
possibility that a particular set of connectionswij vanish. In general, we shall suppose that
a certain subset of connectionswij have prescribed values, which may or may not be zero.
In order to formalize this, we introduce the setsVi (i = 1, . . . , N) and their complements
V c
i : theVi contain all indicesj for whichwij is not prescribed, but are to be determined via

equation (5), while their complementsV ci contain all indicesj for which wij have certain
prescribed values, which may or may not be zero [21]. Let the total number of indicesj for
whichwij (i = 1, . . . , N) is prescribed be given byM. Then (5) is a set ofNn� inequalities
to be satisfied by theN2 −M unknown weightswij .

Multiplying both sides of (5) bypµ(x)xj and summing overµ andx we obtain
p∑
µ=1

∑
x∈�µ

pµ(x)xj2H

( N∑
l=1

wilxl − θi
)
=

p∑
µ=1

∑
x∈�µ

pµ(x)xj ξ
µ

i (j ∈ Vi). (9)

These areN2−M equations for theN2−M non-prescribed weightswij , from which we want
to solve thewij , once the�µ, or, equivalently, thepµ(x) are specified. Notwithstanding the
fact that the number of equations equals the number of unknowns, the solution of (9) for the
weightswil is not unique, because the step function2H only requires that

∑N
l=1wilxl − θi be

positive or negative. As an aside, note that equation (4) is underdetermined forp < N : then
there are more unknownswil than equations.

2.2. The distribution of patterns in the basins

We choose the following, particular, probability distribution function:

pµ(x) =
N∏
i=1

p
µ

i (xi) (10)

where

p
µ

i (xi) = (1− b)δxi ,ξµi + bδxi ,1−ξµi (11)

and whereb is a parameter between 0 and 1, which we will refer to as the ‘basin parameter’.
The sets�µ around the patternsξµ are supposed to be disjunct, and a vectorx

outside∪pµ=1�
µ has, by definition, a vanishing probability of occurrence. The probability

distribution (10) and (11), however, yields a finite—albeit very small—probability of
occurrence for a vectorx outside the direct surrounding�µ of ξµ, since it is defined for
all 2N possible vectorsx. The observation that the probability distribution (10) and (11) for
x outside�µ is very small allows us to approximate the sum of allx ∈ ∪pµ=1�

µ by the larger
sum over allx ∈ {0, 1}N . This approximation will enable us to obtain analytical results.

If b = 0, only the patternsx = ξµ have a non-zero probability of occurrence. For values of
b close to zero any vectorx has a non-zero probability of occurrence, but only vectorsx close
to one of theξµ have a probability of occurrence comparable to the probability of occurrence
of a typical pattern. Note that the basin parameter is directly related to the magnitude of�µ:
the largerb, the larger the number of patterns in�µ that resemble the patternξµ. Let us denote
the average over the patterns as

x̄
µ

j :=
∑

x∈{0,1}N
pµ(x)xj . (12)

Then, from (10) and (11) we find∑
x∈{0,1}N

pµ(x) = 1 (13)
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and

x̄
µ

j =
∑
xj=0,1

[(1− b)δxj ,ξµj + bδxj ,1−ξµj ]xj
∏
k 6=j

∑
xk=0,1

[(1− b)δxk,ξµk + bδxk,1−ξµk ]

= (1− b)ξµj + b(1− ξµj ). (14)

The first equation, equation (13), expresses the normalization of the probability distribution
function, the second one, equation (14), expresses the fact that the average value of the activity
of neuronj is a number between 0 and 1, depending on the basin parameterb. Using (12)
and (13) in (7) yields

γ̄
µ

i (b,wi ) =
( N∑

l=1

wilx̄
µ

l − θi
)
(2ξµi − 1) (15)

whereb is the basin parameter and wherex̄µl is given by (14). Thewil occurring in this
expression still have to be found.

3. Solving the equations

We will now try and solve the problem of finding the weightswil of a recurrent neural
network, in the approximation dictated by equation (9) combined with the particular probability
distribution (10) and (11), and we hope, thereby, to have obtained a useful solution for the
problem that we actually want to solve, i.e. equation (5) or, equivalently, (6) for given collections
�µ. The question, to what extent we will have achieved this goal will be answered in section 4,
where we perform a numerical analysis.

The analytical approach to the problem to solve (9), an equation for the weights of a
many-neuron recurrent network, is an adapted version of the way in which Wiegerinck and
Coolen calculated the weights for a large perceptron [23].

3.1. Implicit equations for the weights

By substituting (10) and (11) into equation (9), we can obtain explicit expressions for both its
left and its right side, and, from these, solve for the weightswil . Using (12), we immediately
obtain for the right-hand side of (9)

p∑
µ=1

∑
x∈�µ

pµ(x)xj ξ
µ

i =
∑
µ

ξ
µ

i x̄
µ

j (16)

wherex̄µj is given by (14). We turn now to the left-hand side of equation (9), the handling of
which is more complicated and will be largely done in the appendix.

We note that ifwij = wij (θi, ξ
µ

i ) is a solution of equation (4) or (5), then also
ŵij (θ̂i , ξ

µ

i ) := aiwij (a−1
i θ̂i , ξ

µ

i ) is a solution of equation (4) or (5), ifθi is replaced bŷθi = aiθi ,
whereai is an arbitrary real constant. Using this freedom of gauge withai = (

∑N
m=1w

2
im)

1/2,
we can adjust the order of magnitude of the weights and the thresholds

ŵij = wij√∑N
m=1w

2
im

θ̂i = θi√∑N
m=1w

2
im

(17)

which has a consequence that, ifwij andθi are of the orderNy (y an arbitrary real number),
the hatted quantities are small, namely of the order 1/

√
N . Note that

N∑
m=1

ŵ2
im = 1. (18)



Probing the basins of attraction of a recurrent neural network 1771

Equations (17) and (18) enable us to switch, at any moment, from hatted to unhatted quantities.
The hatted quantities are useful in view of the property (17), a property that is used in the
appendix. One has, trivially,

2H

( N∑
l=1

wilxl − θi
)
= 2H

( N∑
l=1

ŵilxl − θ̂i
)
. (19)

The further evaluation of the left-hand side of (9) in terms of theŵij is rather complicated and
is given in the appendix. Combining the right-hand side, equation (16), and the left-hand side,
equation (A.21), we find an implicit equation for theŵij

ŵij = N−1
p∑
µ=1

E
µ

i (b)(2ξ
µ

i − 1)x̄µj (i = 1, . . . , N; j ∈ Vi) (20)

where theEµi given by

E
µ

i (b) = N
( ˆ̄γ µi (b,wi ))

−1 exp(−( ˆ̄γ µi (b,wi ))
2/2σ)∑

µ exp(−( ˆ̄γ µi (b,wi ))2/2σ)
(21)

are positive quantities. In the latter equations we abbreviatedσ = b(1− b) and introduced
ˆ̄γ µi (b,wi ), quantities like thēγ µi , equation (15), of which the precise definition is given in the
appendix by (A.17). With (20) and (21) we have obtained an expression for the weightsŵij

in terms of theˆ̄γ µi (b,wi ), which, in turn, is a given function of the weightsŵij , the thresholds
θ̂i and the patternsξµ. In other words, equations (20) and (21) are implicit expressions for the
weights only.

We could find explicit expressions for the weights by expanding theˆ̄γ µi (b,wi ) as a power
series in the basin parameterb

ˆ̄γ µi (b,wi ) = ˆ̄γ µ0
i + ˆ̄γ µ1

i b
1 + ˆ̄γ µ2

i b
2 + · · · . (22)

Inserting this expansion into (20) and (21), using (A.10), and equating equal powers of the

expansion variableb, we may obtain explicit expressions for the expansion coefficientsˆ̄γ µki
(µ = 1, . . . , p; i = 1, . . . , N; k = 0, 1, 2, . . . ,∞) of the power series inb, in terms of
the physical quantitiesξµ, θ̂i and ŵij , wherej is restricted to the setV ci . We thus would
find an analytical solution of equation (9). This scheme has been carried out by Wiegerinck
and Coolen [23] for the perceptron. We do not pursue this path for the recurrent neural net
considered here, but we will use a pragmatic shortcut to arrive at an approximate explicit
expression instead. This will be done on the basis of an alternative implicit expression for the
weights (20), to be derived in the next section (see equation (27) below).

3.2. An alternative implicit expression for the weights

Rewriting (A.17), we may derive an alternative expression forE
µ

i (b). To that end we
substitute (20) into (A.17):

p∑
ν=1

C̄
µν

i E
ν
i (b)(2ξ

ν
i − 1) = 0µi (b) (23)

whereC̄µνi is the symmetricp × p correlation matrix given by

C̄
µν

i (b) := N−1
∑
m∈Vi

x̄µmx̄
ν
m (24)
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with µ, ν = 1, . . . , p and where

0
µ

i (b) :=
[
ˆ̄γ µi (b,wi )−

( ∑
m∈V ci

ŵimx̄
µ
m − θ̂i

)
(2ξµi − 1)

]
(2ξµi − 1). (25)

From (23) we get, by multiplying both sides by(2ξλi −1)C̄µλi and summing overλ = 1, . . . , p,

Eλi (b) =
p∑
µ=1

0
µ

i (b)(C̄
−1
i (b))µλ(2ξλi − 1) (26)

whereC̄−1 is the inverse of the matrix̄C. With (26) we have obtained an alternative expression
for theEµi (b) (see equation (21)) in terms of the same quantities, namelyŵij , ξ

µ

i , θ̂i andb.
Substitution of this alternative expression (26) into (20) leads to an alternative expression for
theŵij with j ∈ Vi :

ŵij = N−1
p∑

µ,ν=1

[
ˆ̄γ µi (b,wi )−

( ∑
m∈V ci

ŵimx̄
µ
m − θ̂i

)
(2ξµi − 1)

]
(2ξµi − 1)(C̄−1

i (b))µνx̄νj .

(27)

In equation (A.17) we introduced thē̂γ
µ

i (b,wi ) as functions of the weightŝwij . Here, we
have found, conversely, the weights in terms of theˆ̄γ µi (b,wi ). By insertingŵij (27) into
ˆ̄γ µi (b,wi ), equation (A.17), and making use of definition (24) forC̄

µν

i (b) one arrives, indeed,
at an identity. In view of (17), equation (27) also holds true with all hats dropped.

The γ̄ occurring in (27) are given by

γ̄
µ

i (b,wi ) = N
p∑
ν=1

C̄
µν

i (b)(2ξ
ν
i − 1)(2ξµi − 1) exp(−(γ̄ νi (b,wi ))

2/2σ)

γ̄ νi (b,wi )
∑

λ exp(−(γ̄ λi (b,wi ))2/2σ)

+

( ∑
m∈V ci

wimx̄
µ
m − θi

)
(2ξµi − 1) (28)

as follows from (21), (23) and (25). Equations (27) with (28) are an implicit expression for
the weights. Developing thēγ according to (22), we might obtain an explicit expression for
the weights (27), just as in section 3.1.

The weightswij have been constructed as a solution of equation (9), an equation which
is strongly related to equation (8). Hence, one may expect that, on the average, theγ

µ

i are
positive, i.e.

γ̄
µ

i (b,wi ) > 0. (29)

We come now to the shortcut referred to above. Instead of determining the coefficients of
the expansion (22) for thē̂γ , we truncate this expansion after the first term. Dropping the hats
and writing

γ̄
µ0
i = κ (30)

for all constant first terms in the expansions (22), we obtain from (27)

wij =


N−1

p∑
µ,ν=1

[
κ −

( ∑
m∈V ci

wimx̄
µ
m − θi

)
(2ξµi − 1)

]
(2ξµi − 1)

×(C̄−1
i (b))µνx̄νj (j ∈ Vi)

wij (prescribed) (j ∈ V ci ).

(31)

Note that with the choicewij (t0) = 0 for j ∈ Vi andwij (t0) = wij (prescribed) forj ∈ V ci in
our main result, equations (1) and (2), the latter equations reduce to equations (31). We thus
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have almost found the main result. The final form (1) and (2) is derived in section 5, after a
numerical analysis of the particular case (31).

In view of (29), we will choose forκ, in equation (30), a certain positive number. This
approach, in which we replace the constantsγ̄

µ0
i by a number to be found by (numerical) trial

and error is,a priori, rather crude. The usefulness of this way of handling will be the subject
of the next section.

4. Numerical results: probing the basins

In this section we study the question regarding the size of the basins of attraction induced by the
collection of patterns�µ(b). Stated differently, we will determine whether the solution (31)
for the weights gives suitable basins of attraction. In particular, we will search for the optimal
valuesκ andb to be taken in (31). This will be done by carrying out a numerical analysis.

Let us denote, more extensively, theγ µi of equation (6) byγi(x,wi (b), ξ
µ

i ). Equation (5),
with weightswij (b) given by equations (31), is satisfied if, for a certain patternx, the
γi(x,wi (b), ξ

µ

i ) are positive for alli. Therefore, we proceed as follows.
We construct probes consisting of patternsx centred around the typical patternsξµ, and

test whether thesex are recognized by the neural net, i.e. we determine the sign of theγi for
the patternsx of the probe. As a probing set we take patterns which are distributed around the
typical patternsξµ in the same way as before, namely as given by formulae (10) and (11), but
now with the basin parameterb replaced by a parameterb̄. The latter parameter is dubbed the
‘probing parameter’. In general, the probing parameterb̄ used in the test will be unequal to the
basin parameterb used to calculate the weightswij (b). If the probing parameter̄b vanishes,
a probing collection�µ(b̄ = 0) consists of precisely one pattern, namelyξµ.

In our numerical study, we first picked a certain value for the probing parameterb̄,
thereafter took anx belonging to the probing set�µ(b̄) defined by thisb̄, and thereupon
calculated theγi(x,wi (b), ξ

µ

i ), equation (6). We repeated this procedure (for fixedb̄) many
times, and then calculated the fraction ofx of the probing set for which allγi(x,wi (b), ξ

µ

i )

were positive.
In figure 1, we have depicted the relative number ofx belonging to the basin (vertical

axis) as a function of the basin parameterb (horizontal axis). The graphsa, b, c andd in
figure 1 correspond to four values of the margin parameterκ: κ = 1, κ = 2N−1, κ = N−1

andκ = 1
2N
−1. All patternsξµ are supposed to have the property that an arbitrary chosenξ

µ

i

has probabilitya to be equal to 1. This probabilitya is referred to as the mean activity. Note
that for random patterns the mean activity is given bya = 0.5. Experimentally, however, the
mean activity is found to be smaller [24]. In all graphs we have chosen vanishing prescribed
weights,wij = 0, j ∈ V ci , andθi = N−1 for all i = 1, . . . , N . That is, we considered diluted
networks. More specifically, we took, randomly, 20% of the weights to belong to the setV ci ,
which corresponds to a dilutiond = 0.2.

Each of the curves in figure 1 corresponds to a different value of the probing parameter
b̄. Going from top to bottom in the four graphs of figure 1, we cross curves with a larger
and larger probing parameterb̄. For the smallest possible value of the probing parameterb̄,
namelyb̄ = 0, the probing set reduces to a typical patternξµ. It follows from figure 1 (see the
upper curves,♦——♦) that the fraction ofx belonging to a basin equals 1 for a large range of
the basin parameterb. As is to be expected, a typical patternξµ indeed is a fixed point for all
values ofb (up to some upper limit which is larger than 0.3).

For values of the probing parameterb̄ close to zero,b̄ = 0.02 say, the fraction ofx
belonging to a basin equals one for a large range of the basin parameterb (see the second
curves from above, indicated by +· · ·+). As long as the probing set is smaller than the set
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Figure 1. Probing of the basins for various values of the margin parameter. In the four graphs
(a)–(d), the fraction ofx with all γi positive is depicted, vertically, for four values of the parameter
κ occurring in the final expression for the weightsκ = 1, κ = 2N−1, κ = N−1 andκ = 1

2N
−1 as

a function of the basin parameterb. The six curves in each of the graphs correspond to different
values of the probing parameterb̄ that characterize the sets�µ(b̄). From top to bottom, in each
graph, we have plotted the fraction ofxwith all γi positive for values of̄b given by the six numbers
0, 0.02, 0.04, 0.06, 0.08 and 0.1, respectively. The number of neurons isN = 256, the number of
patternsξ equalsp = 32. The mean activity isa = 0.2. The dilution of the network isd = 0.2. In
each of the four graphs, (a)–(d), that is, for four different values of the margin parameterκ, there is
an interval of values ofb for which the fraction ofγ equals one, for a range of values of the probing
parameter̄b. Hence, for probes with̄b in the latter range, the net has values for the weightswij (b)

which are such that the net performs optimally.

of patterns which belong to the basin of attraction, the fraction remains one. If this fraction
is less than one, the probing set is larger than the set of patterns which form the basins of
attraction. Hence, the probing parameterb̄ can be viewed as a measure for the size of the basin
of attraction.

To illustrate these latter statements we take as an example figure 1(d). The linesb̄ = 0 and
b̄ = 0.02 coincide: they are the horizontal line with fraction one. Forb̄ = 0.04, corresponding
to a fraction given by the curve with�· · ·�, the fraction rises to one as a function ofb. This
implies that the size of the basins grows as a function ofb. For larger values of̄b, given by
the curves with crosses, triangles and asterisks, the fraction also rises as a function ofb, up
to some value ofb, but never equals one. So in these cases, the number of elements of the
probing sets always clearly is larger than the number of elements belonging to the basins.

Now we come to the effect ofκ on the performance of the network. Comparing figures 1(a)
and (d), and looking where the fraction equals one, we discover that for largeκ, b should be
small, and vice versa.

In figure 2, we study for a large valueκ = 1 and a small valueκ = 1
2N
−1 of the margin

parameter what happens when the number of patterns varies from 16 via 32 to 64. As before
we have taken vanishing prescribed weights,wij = 0, j ∈ V ci , θi = N−1 for all i = 1, . . . , N ,
and dilutiond = 0.2. We find forκ = 1 as well asκ = 1

2N
−1 that when the number of

patterns increases, the size of the basins decreases. But, since the curves have a hump, a basin
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Figure 2. Probing of the basins for various numbers of patterns. The fraction ofx with all γi
positive is depicted, vertically, for three different valuesp of the number of stored patterns,p = 16
(top), p = 32 andp = 64 (bottom), as a function of the basin parameterb. In the left column
the margin parameter is chosen large compared with the threshold,κ = 1, whereas in the right
columnκ is taken as of the order of the threshold,κ = 1

2N
−1. The six curves in each of the graphs

correspond to different values of the probing parameterb̄. From top to bottom in each graph we
have plotted the fraction ofx with all γi positive for values of̄b given by 0, 0.02, 0.04, 0.06, 0.08
and 0.1, respectively. The number of neurons isN = 256, the mean activity isa = 0.2. The
dilution of the network isd = 0.2. It is seen that forb 6= 0, the fraction rises, up to some value of
b. Hence, for largeκ (left column) and smallκ (right column), the net performs better forb 6= 0,
for different values of the number of patternsp.

parameterb with value unequal to zero yields a network that recognizes a larger part of the
probing sets�µ(b̄).

A final observation relating to figures 1 and 2 is that, in general, a network with weights
wij (b 6= 0) possesses larger basins of attraction than a network with weightswij (b = 0).

5. Relation to earlier work

The above mathematical study has been performed for adaptable weights,wij , j ∈ Vi , to be
determined by the equations (9), and prescribed weights,wij , j ∈ V ci . Let us turn to the
situation of a neural network that adapts its weights, in the course of time, according to some
learning rule. In such a network, all weights start, att = t0 say, with some initial valuewij (t0).
The weightswij , with j ∈ V ci , keep their weights throughout the learning process, while the



1776 M Heerema and W A van Leeuwen

weightswij , with j ∈ Vi , change in the course of time. Now we ask the question, whether we
can findw̃ij which are such that̃wij (t) has prescribed valueswij (t0), for all i andj , at t = t0,
whereasγ̄ µi (b, w̃i (t)) has a large probability of being positive. One way to obtain thesew̃ij is
via thewij that are given by the unhatted counterpart of equation (27). In fact, they are given
by

w̃ij (t) =
{
wij (t0) + vij (t) (j ∈ Vi)
wij (t0) (j ∈ V ci )

(32)

where

vij (t) = wij (t)−N−1
p∑

µ,ν=1

∑
m∈Vi

wim(t0)x̄
µ
mC̄
−1
i (b))µνx̄νj (33)

in which we have denoted the (unhatted counterparts of)wij of equation (27) aswij (t). An
alternative way to write equation (33) is given by

vij (t) = N−1
p∑

µ,ν=1

[γ̄ µi (b,wi (t))− γ̄ µi (b,wi (t0))](2ξ
µ

i − 1)(C̄−1
i (b))µνx̄νj . (34)

The weightsw̃ij , equation (32), have been constructed in such a way that

γ̄
µ

i (b, w̃i (t)) = γ̄ µi (b,wi (t)). (35)

The latter equation can be verified easily. In fact, inserting (32) with (34) into (15) gives

γ̄
µ

i (b, w̃i (t)) = γ̄ µi (b,wi (t0)) +
p∑

ν,λ=1

[γ̄ νi (b,wi (t))− γ̄ νi (b,wi (t0))](2ξ
ν
i − 1)

×(2ξµi − 1)(C̄−1
i (b))λνC̄

λµ

i (b) (36)

where we used definitions (15) and (24). SinceC̄
λµ

i (b) is symmetric, the product of the matrices
C̄ gives a Kronecker delta, which in turn yields (35). The property (35) guarantees that when
the γ̄ µi (b,wi (t)) are positive, thēγ µi (b, w̃i (t)) are also positive.

Using the same shortcut as above, equation (30), we obtain

vij (t) = N−1
p∑

µ,ν=1

[κ − γ̄ µi (b,wi (t0))](2ξ
µ

i − 1)(C̄−1
i (b))µνx̄νj (37)

with x̄νj given by (14). Equations (32) and (37) are equivalent to the main result (1) and (2)
mentioned in the introduction. Putting in this expression the basin parameter equal to zero
(b = 0), we recover the expression obtained after a learning process in a preceding paper [21].
This suggest that (32) with (37) is the generalization of the weights in a process of learning
with noisy patterns. Hence, we may state that a network performs optimally when trained with
noise (b 6= 0), or, stated differently (and less precisely), a neural network performs best in an
environment identical to the training environment. This is what Wong and Sherrington refer
to as the ‘principle of adaptation’ [4]. In our next paper, we will extensively return to this
question, in a biological context [22]. The final result will turn out to be that expression (32)
with (37) is, apart from a detail, indeed the generalization of learning with noisy patterns.

6. Conclusion

Although we studied a neural network, we did not consider learning and learning rules. We
simply asked the question, what values must one take for the weights of a neural network in
order that it performs optimally, i.e. that it can retrieve the largest sets of perturbed patterns.
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We were able to reformulate this problem in a mathematically exact way, and to obtain a
solution that, by its construction, had a certain plausibility of being a suitable one. Finally,
we performed a numerical test, which confirmed the usefulness of our approach. The weights
wij (b) obtained in this paper on the basis of perturbed data (b 6= 0) yield a network with
larger basins than would have been obtained in the case of non-perturbed data (b = 0). In
a subsequent paper we will propose a biological learning rule which is such that, apart from
a minor detail, the synapses strive at the values for their weights as given by the main result
of this paper, equations (1) and (2). In other words, nature might realize almost totally what
mathematics suggests.

Appendix A. Derivation of implicit equations for the weights

In this appendix we will evaluate the left-hand side of equation (9). Then, combining this with
the result of section 3.1 for the right-hand side will lead to implicit equations forŵij .

Inserting (19) into the left-hand side of (9), multiplying by a delta function containing a
variablez and integrating overz, we get the equivalent expression∑
µ

∑
x1=0,1

. . .
∑
xN=0,1

pµ(x)

∫
dzxj2H(ŵij xj − θ̂i + z)δ

[
z−

∑
l 6=j

ŵilxl

]
=
∑
µ

∫
dz
∑
xj

p
µ

j (xj )xj2H(ŵij xj − θ̂i + z)P µij (z) (A.1)

where we used (10) and where we abbreviated

P
µ

ij (z) =
∑
x1

. . .
∑
xj−1

∑
xj+1

. . .
∑
xN

∏
m6=j

pµm(xm)δ

[
z−

∑
l 6=j

ŵilxl

]
(j ∈ Vi). (A.2)

The summation overxj in (A.1) yields∑
xj

p
µ

j (xj )xj2H(ŵij xj − θ̂i + z) = x̄µj 2H(ŵij − θ̂i + z) (A.3)

as follows by inserting (11). The factorPµij (z) can be rewritten in the following way.
Using a well known representation of the delta function we first obtain

P
µ

ij (z) =
1

2π

∫ ∞
−∞

dkeikz
∏
m6=j

∑
xm

pµm(xm)e
−ikŵimxm . (A.4)

One has ∑
xm

pµm(xm)e
−ikŵimxm = (1− b)e−ikŵimξ

µ
m + be−ikŵim(1−ξµm) (A.5)

where we used (11). Inserting (A.5) into (A.4) we may write

P
µ

ij (z)=
1

2π

∫
dk exp

{
ikz+

∑
m6=j

ln [(1− b)e−ikŵimξ
µ
m + be−ikŵim(1−ξµm)]

}
(A.6)

where we usedy = exp{ln y}. We can now expand the two exponentials occurring in the
argument of the logarithm. This leads to a term of the form ln(1 +y). Thereupon, we can
expand this term asy− 1

2y
2 + · · · , sincey is of the order ofŵij , andŵij is of the orderN−1/2,

as noted above (see equations (17) and following text). Thus we obtain

ln [(1− b)e−ikŵimξ
µ
m + be−ikŵim(1−ξµm)] = −ikŵimx̄

µ
m − 1

2b(1− b)k2ŵ2
im + · · · . (A.7)
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Inserting (A.7) into (A.6) we may write

P
µ

ij (z) =
1

2π
exp{−(z− z0)

2/2σ }
∫ ∞
−∞

dk exp
{
−σ

2
(k − i(z− z0)/σ )

2
}

+ · · · (A.8)

where we abbreviated

σ := b(1− b)
∑
m6=j

ŵ2
im z0 :=

∑
m6=j

ŵimx̄
µ
m. (A.9)

Using the fact that̂wij is of the order 1/
√
N we may write

σ = b(1− b) (A.10)

a relation we will use later. After evaluating the integral (A.8), we obtain

P
µ

ij (z) = (2πσ)−
1
2 exp{−(z− z0)

2/2σ } + · · · (i = 1, . . . , N; j ∈ Vi) (A.11)

with µ = 1, . . . , p. Substituting (A.3) and (A.11) into the right-hand side of (A.1) we obtain
for the left-hand side of (9)

(2πσ)−
1
2

∑
µ

∫
dzx̄µj 2H(ŵij − θ̂i + z) exp{−(z− z0)

2/2σ }. (A.12)

The integral occurring in (A.12) can be rewritten

I
µ

ij := (2πσ)− 1
2

∫
dz2H(ŵij − θ̂i + z) exp{−(z− z0)

2/2σ }. (A.13)

Changing the integration variablez according toy = (z− z0)/
√

2σ , we find

I
µ

ij = π−
1
2

∫ ∞
−∞

dy2H

(
ŵij − θ̂i + z0 +

√
2σy

)
e−y

2

= π− 1
2

∫ ∞
0

dye−y
2

+ (4π)−
1
2

∫ ∞
0

dy

[
sgn

(
ŵij − θ̂i + z0 −

√
2σy

)
+sgn

(
ŵij − θ̂i + z0 +

√
2σy

) ]
e−y

2
. (A.14)

The integral over the first term is a Gaussian integral; the second term can be expressed in an
error function. We obtain

I
µ

ij = 1
2 + 1

2erf
(
[ ˆ̄γ µi (b,wi )(2ξ

µ

i − 1) + εµij ]/
√

2σ
)

(i = 1, . . . , N; j ∈ Vi) (A.15)

whereµ = 1, . . . , p and where the error function is defined according to

erf(x) := 2√
π

∫ x

0
dye−y

2
. (A.16)

In analogy to (15) we defined

ˆ̄γ µi (b,wi ) =
( N∑

l=1

ŵil x̄
µ

l − θ̂i
)
(2ξµi − 1). (A.17)

Furthermore, we abbreviated

ε
µ

ij = −ŵij x̄µj + ŵij . (A.18)

Note that, apart from aξµ-dependent factor, the quantityεµij equals the weight̂wij . In view

of (17),εµij /
√

2σ is small. The error function in (A.15) can be split into two contributions. For
smallε we have∫ γ+ε

γ

dye−y
2 = εe−γ 2

+ · · · (A.19)
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which allows us to write for (A.15)

I
µ

ij =
1

2
+

1

2
erf
(
ˆ̄γ µi (b,wi )(2ξ

µ

i − 1)/
√

2σ
)

+
ε
µ

ij√
2πσ

exp(−( ˆ̄γ µi (b,wi ))
2/2σ) + · · · .

(A.20)

Using (A.12) and (A.20) with (A.17), the final expression for the left-hand side of (9) can be
obtained:

1
2

∑
µ

x̄
µ

j

[
1 + erf

(
ˆ̄γ µi (b,wi )(2ξ

µ

i − 1)/
√

2σ
)]

+
b(1− b)ŵij√

2πσ

∑
µ

exp(−( ˆ̄γ µi (b,wi ))
2/2σ).

(A.21)

Combining the right- and left-hand sides of equation (9), as given by (16) and (A.21),
respectively, we get an equation from which the weightsŵij follow immediately:

ŵij =
√

2πσ
∑

µ x̄
µ

j

[
(2ξµi − 1)− erf

(
ˆ̄γ µi (b,wi )(2ξ

µ

i − 1)/
√

2σ
)]

2b(1− b)∑µ exp(−( ˆ̄γ µi (b,wi ))2/2σ)
. (A.22)

With the properties

erf
(
ˆ̄γ µi (b,wi )(2ξ

µ

i − 1)/
√

2σ
)
= (2ξµi − 1)erf

(
ˆ̄γ µi (b,wi )/

√
2σ
)

(A.23)

and

erf(y) = 1− 1

y
√
π

e−y
2

+ · · · (A.24)

we can rewrite (A.22),

ŵij =
√

2πσ

2b(1− b)
∑
µ

x̄
µ

j (2ξ
µ

i − 1)
[√
π/2σ ˆ̄γ µi (b,wi )

]−1

× exp(−( ˆ̄γ µi (b,wi ))
2/2σ)

/∑
µ

exp(−( ˆ̄γ µi (b,wi ))
2/2σ) (A.25)

or, equivalently, the final results (20) with (21) of the main text.
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